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Abstract

Stress analysis is accomplished for an infinite isotropic wedge weakened by a screw dislocation. Two different cases

of boundary conditions, i.e., traction–displacement and traction–traction, is considered for the wedge. The Mellin

transform is utilized to solve the governing differential equation. The dislocation solution is employed for the analysis of

wedges containing multiple cracks under antiplane deformation. The resultant system of singular integral equations is

solved numerically to determine dislocation density on the cracks surfaces. This allows the calculation of crack opening

displacements and stress intensity factors. The effects of wedge angle and cracks location and orientation on the stress

intensity factors of straight cracks are investigated.

� 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

Stress analysis in a wedge weakened by dislocations is of some practical importance. The dislocation

solution may serve as the Green’s function for wedges containing multiple cracks and cavities with arbitrary

orientations, locations, and configurations. The literature is replete with studies related to dislocations in

different regions, e.g., Weertman (1996). For want of space, a few investigations focused on wedges with

dislocations and/or cracks are mentioned below.
The stress field due to an edge dislocation located in a quarter plane is obtained by Keer et al. (1983).

They also used the dislocation solution to analyze quarter planes weakened by a straight crack with various

orientations. Hecker and Romanov (1992) treated the problem of edge dislocation in an infinite wedge.

Stress arising along the interface between two dissimilar quarter planes induced by a dislocation situated on

the interface or anywhere within the two quarter planes is obtained by Kelly et al. (1994). Wu (1998)
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derived the stress fields caused by a line force or dislocation in an infinite anisotropic wedge by employing

the Mellin integral transform method. Kipinis (1979) analyzed the problem of an infinite elastic wedge

bisected by a semi-infinite crack. The crack tip is located at a finite distance from the wedge vertex and the

loading is a set of self-equilibrating moments and forces applied to the vertex. The solution of the problem
is carried out via the Mellin transform and the Wiener–Hopf technique. This problem is reexamined by

Sadykhov (1980) for a case where the self-equilibrating moments applied far from the wedge apex. The

above-mentioned works dealt mainly with in-plane deformation of wedges with a dislocation. The problem

of a dissimilar wedge containing a radial crack at the interface under antiplane deformation is solved by

Erdogan and Gupta (1975). The method consists of the reduction of the related dual integral equations to a

singular integral equation. The technique is applicable to wedges with several radial cracks aligned on the

same direction. Another noteworthy contribution is the article by Ohr et al. (1985) wherein the complex

potential technique was utilized to investigate the interaction of a semi-infinite wedge crack with a screw
dislocation in an infinite domain.

The analysis of a screw dislocation in the wedge is accomplished in the first section of this paper. Two

types of boundary conditions, i.e., displacement–traction and traction–traction for the wedge are consid-

ered. Equilibrium equation in terms of antiplane displacement component leads to the Laplace’s equa-

tion. The Mellin transform is employed to obtain the solution. The behavior of displacement and stress

fields in the vicinity of dislocation is studied which reveals the well-known Cauchy type singularity of

stress components. The results of analysis are utilized to analyze wedges containing multiple cracks sub-

jected to antiplane traction on the free edges. A system of singular integral equations is obtained for the
dislocation density on the cracks surfaces. These equations are solved by the methodology developed by

Erdogan et al. (1973). The technique allows the analysis of curved cracks with any smooth geometry.

Moreover, cavities may be treated as closed cracks. For the latter configuration basically the same analysis

prevails but the ensuing system of integral equations is not singular and requires a different numerical

scheme for solution. The issue is beyond the scopes of the current study and will not be pursued further. In

this article, however, numerical results for only multiple embedded straight cracks are presented. The

influence of cracks orientation and location as well as wedge angle on the stress intensity factors is

investigated through some numerical examples. For the particular case of wedge with a single radial crack
the integral equation is identical with that of Erdogan and Gupta (1975) which confirms the validity of

analysis.
2. Wedge with screw dislocation

The distributed dislocation technique is an efficient means for treating multiple curved cracks and

cavities with smooth geometries. The major obstacle in the utilization of the method is the knowledge of
stress fields due to a single dislocation in the region. This task for domains with wedge configuration

containing a screw dislocation is taken up here. In the cylindrical coordinate system ðR; h; zÞ, we consider an
isotropic elastic wedge with infinite radius, and apex angle a which is infinitely extended in the z-direction.
The only nonzero displacement component under antiplane deformation is the out of plane component

wðR; hÞ. Consequently, the constitutive relationships in polar coordinates read as
shz ¼
l
R
ow
oh

; sRz ¼ l
ow
oR

; ð1Þ
where l is the wedge elastic shear modulus. Utilizing (1) the equilibrium equation in terms of displacement
may be written as
DwðR; hÞ ¼ 0; ð2Þ



Fig. 1. Wedge weakened by a screw dislocation.
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where D is the Laplace’s operator. In order to situate a dislocation at the point ða; bÞ, we divide the wedge
into two regions 0 < h < b and b < h < a (Fig. 1). The conditions representing a Volterra type screw
dislocation are (Barber, 1992),
w1ðr; bÞ � w2ðr; bÞ ¼ 0; 0 < r < 1;

w1ðr; bÞ � w2ðr; bÞ ¼ d; 1 < r < 1;
ð3Þ
where r ¼ R=a is the dimensionless variable, subscripts 1 and 2 refer to the domain number, and d desig-
nates the dislocation Burgers vector. The conditions of continuity and self-equilibrium of stress in the

wedge containing dislocation imply that
s1hzðr; bÞ ¼ s2hzðr; bÞ: ð4Þ
The solution to (2) is accomplished by means of Mellin transformation. The Mellin transform for

sufficiently regular function f ðrÞ is defined as
F ðsÞ ¼
Z 1

0

f ðrÞrs�1 dr; ð5Þ
where s is the complex variable. The inversion of Mellin transform yields
f ðrÞ ¼ 1

2pi

Z cþi1

c�i1
F ðsÞr�s ds: ð6Þ
The application of (5) to (2) leads to a second order ordinary differential equation, for each region. The

solution to these equations is readily known
Wkðs; hÞ ¼ akðsÞ cosðhsÞ þ bkðsÞ sinðhsÞ; k ¼ 1; 2: ð7Þ
The Mellin transform of (3) and (4), provided that the Bromwich line in (6) is c < 0, results in
W1ðs; bÞ � W2ðs; bÞ ¼ � d
s
;

oW1ðs; hÞ
oh

����
h¼b

¼ oW2ðs; hÞ
oh

����
h¼b

: ð8Þ
Depending upon the kind of boundary data on the edges of wedge, two different cases may be con-
sidered, i.e., displacement–traction and traction–traction conditions. These cases are analyzed separately in

the following.
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2.1. Displacement–traction

The wedge is considered to be fixed at the edge h ¼ 0 and traction free at h ¼ a. Therefore, the boundary
conditions became
w1ðr; 0Þ ¼ 0; s2hzðr; aÞ ¼ 0: ð9Þ
The above conditions by virtue of (1) and (5) reduce to
W1ðs; 0Þ ¼ 0;
oW2ðs; hÞ

oh

����
h¼a

¼ 0: ð10Þ
Utilizing (8) and (10), the four unknown coefficients in (7) may be determined; and in view of (1) and (6)

the stress components results in
shz ¼ l
d
a
1

2pi

Z cþi1

c�i1

sinðða � bÞsÞ cosðhsÞ
cosðasÞ

� �
r�s�1 ds; 06 h6 b;

shz ¼ �l
d
a
1

2pi

Z cþi1

c�i1

cosðbsÞ sinððh � aÞsÞ
cosðasÞ

� �
r�s�1 ds; b6 h6 a;

srz ¼ �l
d
a
1

2pi

Z cþi1

c�i1

sinðða � bÞsÞ sinðhsÞ
cosðasÞ

� �
r�s�1 ds; 06 h6b;

srz ¼ �l
d
a
1

2pi

Z cþi1

c�i1

cosðbsÞ cosððh � aÞsÞ
cosðasÞ

� �
r�s�1 ds; b6 h6 a:

ð11Þ
The integrals in (11) can be evaluated employing contour integration and the residue theorem. The

integrands are singular at points si ¼ ð2i� 1Þp=ð2aÞ, i ¼ 0;�1;�2; . . . Considering the requirement im-
posed in the derivation of the first of (8) the Bromwich line in (11) should be chosen such that

�p=2a < c < 0. To carry out the contour integration, we require that the integrands in (11) vanish as
jsj ! 1. Consequently, for 0 < r6 1, the contour of integration consists of the second and third quadrants
of the complex S-plane, whereas for 16 r < 1, the contour engulfs the first and fourth quadrants.
Applying the residue theorem in the region 0 < r6 1, we have
shz ¼ l
d
aa

X1
i¼1

ð�1Þi sin ð2i� 1Þpða � bÞ
2a

� �
cos

ð2i� 1Þph
2a

� �
r
ð2i�1Þp
2a �1; 06 h6 b;

shz ¼ �l
d
aa

X1
i¼1

ð�1Þi cos ð2i� 1Þpb
2a

� �
sin

ð2i� 1Þpðh � aÞ
2a

� �
r
ð2i�1Þp
2a �1; b6 h6 a;

srz ¼ l
d
aa

X1
i¼1

ð�1Þi sin ð2i� 1Þpða � bÞ
2a

� �
sin

ð2i� 1Þph
2a

� �
r
ð2i�1Þp
2a �1; 06 h6 b;

srz ¼ l
d
aa

X1
i¼1

ð�1Þi cos ð2i� 1Þpb
2a

� �
cos

ð2i� 1Þpðh � aÞ
2a

� �
r
ð2i�1Þp
2a �1; b6 h6 a:

ð12Þ
The stress components in the region 16 r < 1 may be written by merely replacing p by �p, in the above
equations. Utilizing equalities given in Appendix A, the stress components in the whole wedge region

simplify to
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shz ¼
ld
2aa

r
p
2a�1 r

p
a

�
� 1
	 cos pðhþbÞ

2a


 �
1þ r2pa � 2rp

a cos pðhþbÞ
a


 �
2
4 þ

cos pðh�bÞ
2a


 �
1þ r2pa � 2rp

a cos pðh�bÞ
a


 �
3
5

srz ¼ � ld
2aa

r
p
2a�1 r

p
a

�
þ 1
	 sin pðhþbÞ

2a


 �
1þ r

2p
a � 2rp

a cos pðhþbÞ
a


 �
2
4 þ

sin pðh�bÞ
2a


 �
1þ r

2p
a � 2rp

a cos pðh�bÞ
a


 �
3
5

ð13Þ
The behavior of stress fields at the apex of wedge is identical with that obtained for isotropic finite

wedges by Kargarnovin et al. (1997). To investigate the behavior of stress fields at the dislocation position

we change the coordinate system according to Fig. 1. The relationships between the two coordinates may be
written as
r2 ¼ 1þ r02 þ 2r0 cosðh0Þ; h ¼ b þ sin�1 r0 sin h0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ r02 þ 2r0 cos h0p

" #
; 06 h0

6 2p; ð14Þ
where r0 ¼ R0=a. Substituting (14) into (13) and carrying out the necessary manipulation, it is easy to deduce
that
ðshz; srzÞ �
1

r0
as r0 ! 0: ð15Þ
It should be noted that the above Cauchy-type singularity is reported previously, e.g., Weertman and

Weertman (1992), for a two-dimensional isotropic media containing a screw dislocation. The displacement
fields are obtained by substituting stress component shz from (13) into the first of (1), integrating the

resultant expression with respect to h and utilizing the first of boundary data (9). This leads to
wðr; hÞ ¼ d
2p

tan�1
2r

p
2a

rp
a � 1 sin

p
2a

ðh

��

þ bÞ
��

þ tan�1 2r
p
2a

rp
a � 1 sin

p
2a

ðh

�

� bÞ
���

: ð16Þ
Changing the coordinates in (16) according to (14) we may observe that the first term of (16) is single-

valued function of variable h0 whereas the second term is multiple-valued. Selecting the proper branch of

the second term on the cut surfaces as
lim
h0!0

tan�1
2ð1þ r02 þ 2r0 cosðh0ÞÞ

p
4a

ð1þ r02 þ 2r0 cosðh0ÞÞ
p
2a � 1

sin
p
2a
sin�1

r0 sin h0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ r02 þ 2r0 cos h0p

" # !" #
¼ 0;

lim
h0!2p

tan�1
2ð1þ r02 þ 2r0 cosðh0ÞÞ

p
4a

ð1þ r02 þ 2r0 cosðh0ÞÞ
p
2a � 1

sin
p
2a
sin�1

r0 sin h0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ r02 þ 2r0 cos h0p

" # !" #
¼ 2p;

ð17Þ
we conclude that (16) satisfies boundary condition (3).

2.2. Traction–traction

Suppose the wedge is traction free at the edges h ¼ 0 and h ¼ a. The conditions imposed by a screw
dislocation are given in (3) and the boundary conditions for the wedge read as
s1hzðr; 0Þ ¼ 0; s2hzðr; aÞ ¼ 0: ð18Þ

The above boundary data with the aid of the first (1) and transformation (5), yield
oW1ðs; hÞ
oh

����
h¼0

¼ 0; oW2ðs; hÞ
oh

����
h¼a

¼ 0: ð19Þ
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Utilizing (8) and (19) the coefficients in (7) may be computed. And an analysis analogous to case (a)

results in
shz ¼ l
d
a
1

2pi

Z cþi1

c�i1

sinðða � bÞsÞ sinðhsÞ
sinðasÞ

� �
r�s�1 ds; 06 h6 b;

shz ¼ �l
d
a
1

2pi

Z cþi1

c�i1

sinðbsÞ sinððh � aÞsÞ
sinðasÞ

� �
r�s�1 ds; b6 h6 a;

srz ¼ l
d
a
1

2pi

Z cþi1

c�i1

sinðða � bÞsÞ cosðhsÞ
sinðasÞ

� �
r�s�1 ds; 06 h6 b;

srz ¼ �l
d
a
1

2pi

Z cþi1

c�i1

sinðbsÞ cosððh � aÞsÞ
sinðasÞ

� �
r�s�1 ds; b6 h6 a:

ð20Þ
The singularities of (20) are located at si ¼ ip=a, i ¼ �1;�2; . . . Carrying out the contour integration in
the region 0 < r6 1, the stress components may be readily obtained
shz ¼ l
d
aa

X1
i¼1

ð�1Þi sin ipða � bÞ
a

� �
sin

iph
a

� �
r
ip
a�1; 06 h6 b;

shz ¼ �l
d
aa

X1
i¼1

ð�1Þi sin ipb
a

� �
sin

ipðh � aÞ
a

� �
r
ip
a�1; b6 h6 a;

srz ¼ �l
d
aa

X1
i¼1

ð�1Þi sin ipða � bÞ
a

� �
cos

iph
a

� �
r
ip
a�1; 06 h6 b;

srz ¼ l
d
aa

X1
i¼1

ð�1Þi sin ipb
a

� �
cos

ipðh � aÞ
a

� �
r
ip
a�1; b6 h6 a:

ð21Þ
Carrying out some straightforward manipulations and using the relationships given in Appendix A the

stress components in region 0 < r6 1, 06 h6 a may be recast to
shz ¼
ld
2aa

r
p
a�1

r
p
a � cos pðh�bÞ

a


 �
1þ r2pa � 2rp

a cos pðh�bÞ
a


 �
2
4 �

r
p
a � cos pðhþbÞ

a


 �
1þ r2pa � 2rp

a cos pðhþbÞ
a


 �
3
5;

srz ¼
ld
2aa

r
p
a�1

sin pðhþbÞ
a


 �
1þ r2pa � 2rp

a cos pðhþbÞ
a


 �
2
4 �

sin pðh�bÞ
a


 �
1þ r2pa � 2rp

a cos pðh�bÞ
a


 �
3
5:

ð22Þ
The stress components in the region 16 r < 1, 06 h6 a may be obtained by replacing p by �p and
changing the sign of the relevant component in (22). Substituting the stress component shz into the first of

(1), integrating the resultant expression with respect to h and ignoring the rigid body displacement, we
arrive at the displacement field in the whole wedge region
wðr; hÞ ¼ d
2p

tan�1
r

p
a þ 1
rp

a � 1 tan
p
2a

ðh

��

� bÞ
��

� tan�1 r
p
a þ 1
rp

a � 1 tan
p
2a

ðh

�

þ bÞ
���

: ð23Þ
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An analysis identical to the displacement–traction case reveals that the first term of the displacement

field (23) is multiple-valued on the dislocation line. Choosing the proper branch of the multiple-valued

function leads to boundary data (3).
3. Isotropic wedge with arbitrary oriented cracks

The dislocation solutions accomplished in the preceding section may be employed to analyze wedges

with several arbitrary curved cracks. For the sake of brevity of calculations we consider only straight
cracks. Let N be the number of cracks extended from ðai; ciÞ to ðbi; giÞ, i ¼ 1; 2; . . . ;N in polar coordinates
(Fig. 2). The antiplane traction on the surface of ith crack in terms of stress components in polar coor-
dinates become
s�hzðqi; hiÞ ¼ shz cosui � srz sinui: ð24Þ
Suppose dislocations with unknown density BzjðqjÞ are distributed on the infinitesimal segment
qj < q < qj þ dqj at the surface of jth crack. The traction on the surface of ith crack due to the presence of
above dislocation for displacement–traction case utilizing (13) and (24) becomes
s�hzðqi; hiÞ ¼
lBzjðqjÞ
2aqj

C
1
2
�a

p
ij

Cij cos
pðhiþhjÞ
2a � ui


 �
� cos pðhiþhjÞ

2a þ ui


 �
1þ C2ij � 2Cij cos

pðhiþhjÞ
a


 �
2
4

þ
Cij cos

pðhi�hjÞ
2a � ui


 �
� cos pðhi�hjÞ

2a þ ui


 �
1þ C2ij � 2Cij cos

pðhi�hjÞ
a


 �
3
5 ðdqjÞ

2
h

þ ðqj dhjÞ2
i1
2

; i 6¼ j; ð25Þ
where Cij ¼ ðqi=qjÞ
p=a
. Analogously from (24) and (22), the traction on the ith crack produced by the

aforementioned distribution of dislocations for the traction–traction case is
Fig. 2. Schematic view of a typical crack in a wedge.
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s�hzðqi; hiÞ ¼
lBzjðqjÞ
2aqj

C
1�a

p
ij

Cij cosðuiÞ � cos
pðhi�hjÞ

a þ ui


 �
1þ C2ij � 2Cij cos

pðhi�hjÞ
a


 �
2
4 �

Cij cosðuiÞ � cos
pðhiþhjÞ

a þ ui


 �
1þ C2ij � 2Cij cos

pðhiþhjÞ
a


 �
3
5

� ðdqjÞ
2

h
þ ðqj dhjÞ2

i1
2

; ai < qi 6 qj; i 6¼ j;

s�hzðqi; hiÞ ¼ �
lBzjðqjÞ
2aqj

C
�1�a

p
ij

C�1
ij cosðuiÞ � cos

�pðhi�hjÞ
a þ ui


 �
1þ C�2

ij � 2C�1
ij cos

pðhi�hjÞ
a


 �
2
4 �

C�1
ij cosðuiÞ � cos

�pðhiþhjÞ
a þ ui


 �
1þ C�2

ij � 2C�1
ij cos

pðhiþhjÞ
a


 �
3
5

� ðdqjÞ
2

h
þ ðqj dhjÞ2

i1
2

; qj 6 qi < bi; i 6¼ j:

ð26Þ
Covering the cracks surfaces by dislocations, the principle of superposition may be invoked to obtain

traction on the crack surfaces. The details of derivations are not given here but the following steps are

taken. Eqs. (25) and (26) are integrated on the crack surfaces and the resultant tractions in each case are
superimposed. The integration of (25) and (26) may be facilitated by describing cracks configurations in

parametric form. The parameter �16 s6 1 is chosen and the following change of variables is employed for
straight cracks:
qiðsÞ ¼
1

2
a2i ð1
h

� sÞ2 þ b2i ð1þ sÞ2 þ 2ð1� s2Þaibi cosðgi � ciÞ
i1=2

;

hiðsÞ ¼ ci þ sin�1
ðsþ 1Þbi
2qiðsÞ

sinðgi

�
� ciÞ

�
;

uiðsÞ ¼ ci � hiðsÞ þ sin�1
bi sinðgi � ciÞ

a2i þ b2i � 2aibi cosðgi � ciÞ½ �1=2

" #
:

ð27Þ
The traction on the surface of ith crack yields
s�hziðqiðsÞ; hiðsÞÞ ¼
XN
j¼1

Z 1

�1
bzjðtÞkijðs; tÞdt; �16 s6 1; i ¼ 1; 2; . . . ;N ; ð28Þ
where bzjðtÞ is the dislocation density on the nondimensionalized length �16 t6 1. The kernel kijðs; tÞ in the
displacement–traction case is
kijðs; tÞ ¼
l
2a


 �
h0
jðtÞ


 �22
4 þ

q0
jðtÞ

qjðtÞ

 !235
1
2

� ðCijðs; tÞÞ
1
2
�a

p

Cijðs; tÞ cos pðhiðsÞþhjðtÞÞ
2a � uiðsÞ


 �
� cos pðhiðsÞþhjðtÞÞ

2a þ uiðsÞ

 �

1þ ðCijðs; tÞÞ2 � 2Cijðs; tÞ cos pðhiðsÞþhjðtÞÞ
a


 �
2
4

þ
Cijðs; tÞ cos pðhiðsÞ�hjðtÞÞ

2a � uiðsÞ

 �

� cos pðhiðsÞ�hjðtÞÞ
2a þ uiðsÞ


 �
1þ ðCijðs; tÞÞ2 � 2Cijðs; tÞ cos pðhiðsÞ�hjðtÞÞ

a


 �
3
5; i; j ¼ 1; 2; . . . ;N ; ð29Þ
where Cijðs; tÞ ¼ ðqiðsÞ=qjðtÞÞ
p=a
, hj and qj are given in (27) and prime denotes differentiation with respect to

the argument. Making use of (15) we may conclude that kijðs; tÞ has Cauchy-type singularity for i ¼ j as
t ! s. To illustrate this behavior the Hopital’s rule is applied on (29) which leads to
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kiiðs; tÞ ¼
a�1
s� t

þ
X1
m¼0

amðs� tÞm as t ! s; ð30Þ
where a�1 ¼ l=2p. The coefficients am, m ¼ 0; 1; . . . are regular functions of variable t in the interval
�16 t6 1 which are lengthy and are not given here. The kernel of integral equation (28) for traction–
traction case becomes
kijðs; tÞ ¼
l
2a


 �
ðh0

jðtÞÞ
2

2
4 þ

q0
jðtÞ

qjðtÞ

 !235
1
2

ðCijðs; tÞÞ1�
a
p

Cijðs; tÞcosðuiðsÞÞ� cos
pðhiðsÞ�hjðtÞÞ

a þuiðsÞ

 �

1þðCijðs; tÞÞ2� 2Cijðs; tÞcos pðhiðsÞ�hjðtÞÞ
a


 �
2
4

�
Cijðs; tÞcosðuiðsÞÞ� cos

pðhiðsÞþhjðtÞÞ
a þuiðsÞ


 �
1þðCijðs; tÞÞ2� 2Cijðs; tÞcos pðhiðsÞþhjðtÞÞ

a


 �
3
5 for 0< qiðsÞ6qjðtÞ;

kijðs; tÞ ¼
�l
2a


 �
ðh0

jðtÞÞ
2

2
4 þ

q0
jðtÞ

qjðtÞ

 !235
1
2

ðCijðs; tÞÞ�1�
a
p

ðCijðs; tÞÞ�1 cosðuiðsÞÞ� cos
�pðhiðsÞ�hjðtÞÞ

a þuiðsÞ

 �

1þðCijðs; tÞÞ�2� 2ðCijðs; tÞÞ�1 cos pðhiðsÞ�hjðtÞÞ
a


 �
2
4

�
ðCijðs; tÞÞ�1 cosðuiðsÞÞ� cos

�pðhiðsÞþhjðtÞÞ
a þuiðsÞ


 �
1þðCijðs; tÞÞ�2� 2ðCijðs; tÞÞ�1 cos pðhiðsÞþhjðtÞÞ

a


 �
3
5 for qjðtÞ6qiðsÞ<1;

i; j¼ 1;2; . . . ;N :

ð31Þ
Analogously, in the traction–traction case the kernel kijðs; tÞ has Cauchy-type singularity for i ¼ j as
t ! s and the coefficient of singular term in (30) is a�1 ¼ ðl=2pÞsgnðt � sÞ, where sgn is the sign function.
For the special case of a wedge with traction free edges, weakened by a single radial crack extended in

a6 r6 b, and bisecting the wedge apex angle and under constant traction s�hz on the crack surface the
integral equation (28) simplifies to
s�hzðqðsÞÞ ¼
lðb� aÞ
2a

Z 1

�1

ðqðsÞÞ
p
a�1ðqðtÞÞ

p
a

ðqðsÞÞ
2p
a � ðqðtÞÞ

2p
a

bzðtÞdt; ð32Þ
where
qðsÞ ¼ bþ a
2

þ b� a
2

s; �16 s6 1: ð33Þ
The above integral equation is identical with that derived by Erdogan and Gupta (1975). This may validate

the present analysis.

By virtue of Buckner’s principle (Korsunsky and Hills, 1996) the left-hand side of Eq. (28) after changing

the sign is the traction caused by the external loading on the uncracked wedge at the presumed surface of

cracks. The applied traction on wedge with multiple cracks for displacement–traction case is known

shzðq; aÞ ¼ hðqÞ. The stress components in the above wedge where cracks are removed are obtained by the
direct application of Mellin transform. This results in
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sqzðq; hÞ ¼
1

qa

Z 1

0

b
1
2ð1� bÞ sin ph

2a

� 	
1þ b2 þ 2b cos ph

a

� 	 hðfÞdf;
shzðq; hÞ ¼

1

qa

Z 1

0

b
1
2ð1þ bÞ cos ph

2a

� 	
1þ b2 þ 2b cos ph

a

� 	 hðfÞdf;
ð34Þ
where b ¼ ðq=fÞp=a. The applied traction on the wedge with traction–traction boundary conditions is
shzðq; 0Þ ¼ shzðq; aÞ ¼ hðqÞ. The stress fields in the uncracked wedge yield
sqzðq; hÞ ¼
2

qa

Z 1

0

bðb2 � 1Þ cos ph
a

� 	
1þ b4 � 2b2 cos 2ph

a

� 	 hðfÞdf;
shzðq; hÞ ¼

2

qa

Z 1

0

bðb2 þ 1Þ sin ph
a

� 	
1þ b4 � 2b2 cos 2ph

a

� 	 hðfÞdf:
ð35Þ
We assume, without any loss of generality, that the applied traction on wedge is a patch load defined by
hðqÞ ¼ s0Hðl� qÞ; ð36Þ

where l and s0 are constant length and traction, respectively, and HðqÞ is the Heaviside-step function.
Utilizing (24) and (34), the following traction should be applied on the surface of ith crack in displacement–
traction case:
s�hziðqiðsÞ; hiðsÞÞ ¼ � s0
qiðsÞa

Z l

0

b
1
2
i ðsÞ cos phiðsÞ

2a þ uiðsÞ

 �

þ biðsÞ cos phiðsÞ
2a � uiðsÞ


 �h i
1þ b2i ðsÞ þ 2biðsÞ cos phiðsÞ

a


 � df; ð37Þ
where biðsÞ ¼ ðqiðsÞ=fÞ
p=a
. Similarly for traction–traction case by virtue of (24) and (35) the left-hand side of

(28) becomes
s�hziðqiðsÞ; hiðsÞÞ ¼ � 2s0
qiðsÞa

Z l

0

biðsÞ sin phiðsÞ
a þ uiðsÞ


 �
þ b2i ðsÞ sin

phiðsÞ
a � uiðsÞ


 �h i
1þ b4i ðsÞ � 2b2i ðsÞ cos 2phiðsÞ

a


 � df: ð38Þ
Employing the definition of dislocation density function, the equation for the crack opening displace-

ment across the jth crack is
wþ
j ðsÞ � w�

j ðsÞ ¼
Z s

�1
ðq0

jðtÞÞ
2

h
þ ðqjðtÞh0

jðtÞÞ
2
i1
2

bzjðtÞdt; j ¼ 1; 2; 3; . . . ;N : ð39Þ
The displacement field is single-valued out of crack surfaces. Thus, the dislocation densities are subjected

to the following closure requirement:
Z 1

�1
ðq0

jðtÞÞ
2

h
þ ðqjðtÞh0

jðtÞÞ
2
i1
2

bzjðtÞdt ¼ 0; j ¼ 1; 2; 3; . . . ;N : ð40Þ
The Cauchy singular integral equations (28) and (40) are to be solved simultaneously, to obtain the

dislocation density. This is accomplished by means of Gauss–Chebyshev quadrature scheme developed in

Erdogan et al. (1973). The dislocation density is taken as
bzjðtÞ ¼
gzjðtÞffiffiffiffiffiffiffiffiffiffiffiffi
1� t2

p ; �1 < t < 1; j ¼ 1; 2; . . . ;N : ð41Þ
Substituting (41) into (28) and (40) and discretizing the domain, �1 < t < 1, the integral equations re-
duced to the following system of N � m linear algebraic equations:
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A11 A12 A13 � � � A1N
A21 A22 A23 � � � A2N
A31 A32 A33 � � � A3N

..

. ..
. ..

. . .
.

� � �
AN1 AN2 AN3 � � � ANN

2
66666664

3
77777775

gz1ðtpÞ
gz2ðtpÞ
gz3ðtpÞ

..

.

gzN ðtpÞ

2
66666664

3
77777775
¼

q1ðsrÞ
q2ðsrÞ
q3ðsrÞ

..

.

qN ðsrÞ

2
66666664

3
77777775
; ð42Þ
where the collocation points are
sr ¼ cos
pr
m


 �
; r ¼ 1; . . . ;m� 1; tp ¼ cos

pð2p � 1Þ
2m

� �
; p ¼ 1; . . . ;m: ð43Þ
The components of matrix and vectors in (42) are
Aij ¼
1

m

kijðs1; t1Þ kijðs1; t2Þ � � � kijðs1; tmÞ

kijðs2; t1Þ kijðs2; t2Þ � � � kijðs2; tmÞ

..

. ..
. ..

.

kijðsm�1; t1Þ kijðsm�1; t2Þ � � � kijðsm�1; tmÞ

pdijDiðt1Þ pdijDiðt2Þ � � � pdijDiðtmÞ

2
6666666664

3
7777777775
;

gzjðtpÞ ¼ gzjðt1Þ gzjðt2Þ � � � gzjðtmÞ½ �T;

qjðsrÞ ¼
1

p
s�hzjðqjðs1Þ; hjðs1ÞÞ s�hzjðqjðs2Þ; hjðs2ÞÞ � � � s�hzjðqjðsm�1Þ; hjðsm�1ÞÞ 0
� �T

;

ð44Þ
where dij in the last row of Aij is the Kronecker delta and superscript T stands for the transpose of a vector

and DiðtÞ ¼ ½ðq0
iðtÞÞ

2 þ ðqiðtÞh0
iðtÞÞ

2�
1
2.

The stress intensity factors for ith crack in terms of crack opening displacement (Fig. 2) is (Kanninen and
Popelar, 1985)
kIIILi ¼
ffiffiffi
2

p

4
l lim

rLi!0

w�
i ðsÞ � wþ

i ðsÞffiffiffiffiffi
rLi

p ; kIIIRi ¼
ffiffiffi
2

p

4
l lim

rRi!0

w�
i ðsÞ � wþ

i ðsÞffiffiffiffiffi
rRi

p : ð45Þ
Setting the points Li and Ri on the surface of the crack in the direction shown in Fig. 2, yields
cLi ¼ p; cRi
¼ p;

rLi ¼
1þ s
2

� �
a2i
�

þ b2i � 2aibi cosðgi � ciÞ
�1
2; rRi ¼

1� s
2

� �
a2i
�

þ b2i � 2aibi cosðgi � ciÞ
�1
2:

ð46Þ
The substitution of (41) into (39), and the resultant equation into (45) in conjunction with (46), leads to

the stress intensity factors
kIIILi ¼ �
ffiffiffi
2

p

4
l a2i
�

þ b2i � 2aibi cosðgi � ciÞ
�1
4gzið�1Þ;

kIIIRi ¼
ffiffiffi
2

p

4
l a2i
�

þ b2i � 2aibi cosðgi � ciÞ
�1
4gzið1Þ:

ð47Þ
The solutions of Eq. (42) are plugged into (47) to obtain the stress intensity factors.
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4. Numerical examples and results

The analysis developed in the preceding section allows the consideration of a wedge with any number of

cracks with different orientations. Validation of the numerical results is carried out by considering an
isotropic half-plane containing a radial crack with changing orientation. The boundary of half-plane is

traction free and a constant antiplane traction is applied on the crack surfaces. The dimensionless stress

intensity factors determined by the present approach are in excellent agreement with the results in Tables 1

and 3 of the article by Erdogan and Gupta (1975).

In what follows, three numerical examples are presented to demonstrate the applicability of the outlined

methodology. The applied traction in all examples is the patch load (36), with l ¼ 10 cm. The first example
is a wedge with apex angle a ¼ 2p=3 weakened by two equal-sized radial cracks bisecting the apex angle.
The distance between the center of cracks are l=5 and the distance from the apex to the center of the first
cracks is l=10, where l is the length of the patch load. Figs. 3 and 4, show the normalized stress intensity
factors (SIF), k=k0, where k0 ¼ s0

ffiffiffiffiffi
a0

p
is the SIF of the corresponding crack situated in an infinite plane

under far field antiplane traction s0 and a0 is half of the crack length, against the nondimensionalized crack
lengths for the two different boundary conditions of wedge. As it may be observed, the SIF increases rapidly

as the crack tip approaches the wedge apex. A similar trend may be noticed as the distance between the tips

of cracks decreases. The formation of regions with high stress level is indeed attributed to the interaction of

geometric singularities. Moreover, the slow growth of kR2=k0 versus the crack length may be noticed.
The effect of wedge angle on the SIF is examined by considering a radial crack with constant length 0:2l,

and distance from the center to the apex c ¼ 0:101l. Figs. 5 and 6 display the normalized SIF verses the
wedge angle for this crack with fixed orientation c ¼ p=6 as well as varying orientation wherein the crack
constantly bisects the wedge angle. As the wedge angle increases the singularity of stress components at the
Fig. 3. Dimensionless stress intensity factors for two radial cracks with displacement–traction boundary condition.



Fig. 4. Dimensionless stress intensity factors for two radial cracks with traction–traction boundary condition.

Fig. 5. Variations of k=k0 with changing wedge apex angle and displacement–traction boundary condition.
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wedge apex magnifies (Kargarnovin et al., 1997). On the contrary, according to Eqs. (37) and (38) the
tractions on the crack surface diminish by increasing the wedge angle. The overall effects of the two

parameters on the SIF are shown in the aforementioned two figures.



Fig. 6. Variations of k=k0 with changing wedge apex angle and traction–traction boundary condition.

Fig. 7. Dimensionless stress intensity factors for two nonaligned cracks for displacement–traction boundary condition.
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Fig. 8. Dimensionless stress intensity factors for two nonaligned cracks for traction–traction boundary condition.
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In the last example, a wedge with angle a ¼ 5p=6 containing two cracks with equal lengths is considered.
The variations of k=k0 with nondimensionalized crack length are depicted in Figs. 7 and 8 for two different
boundary conditions of the wedge. The crack closer to the wedge apex obviously experiences higher stress

intensity factors.
5. Conclusion

A simple analysis is performed to obtain closed form expressions for displacement and stress fields due

to the presence of a Volterra type screw dislocation in an elastic wedge. Two different types of boundary

conditions are considered. The stress fields reveal Cauchy type singularity in the vicinity of dislocation.

This is in agreement with the reported results in literature. The dislocation solutions are utilized to

determine stress intensity factors for embedded straight cracks. The interaction of two adjacent cracks

shows that the stress intensity factors of the two approaching crack tips intensify. Moreover, the stress
intensity factor increases by increasing the crack length. The interaction between the wedge apex and crack

tip is significant; the stress intensity factor grows rapidly as the distance between the crack tip and wedge

apex reduces.

Appendix A

The following identities for jKj6 1 may be easily proved:

X1
i¼1

ð�KÞi sinðixÞ ¼ � K sinðxÞ
1þ K2 þ 2K cosðxÞ ;
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X1
i¼1

ð�KÞi cosðixÞ ¼ �K
K þ cosðxÞ

1þ K2 þ 2K cosðxÞ ;
X1
i¼1

ð�KÞi sin½ð2i� 1Þx� ¼ � Kð1� KÞ sinðxÞ
1þ K2 þ 2K cosð2xÞ ;
X1
i¼1

ð�KÞi cos½ð2i� 1Þx� ¼ � KðK þ 1Þ cosðxÞ
1þ K2 þ 2K cosð2xÞ :
In the case of jKj > 1, we should replace K by K�1.
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