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Abstract

Stress analysis is accomplished for an infinite isotropic wedge weakened by a screw dislocation. Two different cases
of boundary conditions, i.e., traction—displacement and traction—traction, is considered for the wedge. The Mellin
transform is utilized to solve the governing differential equation. The dislocation solution is employed for the analysis of
wedges containing multiple cracks under antiplane deformation. The resultant system of singular integral equations is
solved numerically to determine dislocation density on the cracks surfaces. This allows the calculation of crack opening
displacements and stress intensity factors. The effects of wedge angle and cracks location and orientation on the stress
intensity factors of straight cracks are investigated.
© 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

Stress analysis in a wedge weakened by dislocations is of some practical importance. The dislocation
solution may serve as the Green’s function for wedges containing multiple cracks and cavities with arbitrary
orientations, locations, and configurations. The literature is replete with studies related to dislocations in
different regions, e.g., Weertman (1996). For want of space, a few investigations focused on wedges with
dislocations and/or cracks are mentioned below.

The stress field due to an edge dislocation located in a quarter plane is obtained by Keer et al. (1983).
They also used the dislocation solution to analyze quarter planes weakened by a straight crack with various
orientations. Hecker and Romanov (1992) treated the problem of edge dislocation in an infinite wedge.
Stress arising along the interface between two dissimilar quarter planes induced by a dislocation situated on
the interface or anywhere within the two quarter planes is obtained by Kelly et al. (1994). Wu (1998)
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derived the stress fields caused by a line force or dislocation in an infinite anisotropic wedge by employing
the Mellin integral transform method. Kipinis (1979) analyzed the problem of an infinite elastic wedge
bisected by a semi-infinite crack. The crack tip is located at a finite distance from the wedge vertex and the
loading is a set of self-equilibrating moments and forces applied to the vertex. The solution of the problem
is carried out via the Mellin transform and the Wiener—Hopf technique. This problem is reexamined by
Sadykhov (1980) for a case where the self-equilibrating moments applied far from the wedge apex. The
above-mentioned works dealt mainly with in-plane deformation of wedges with a dislocation. The problem
of a dissimilar wedge containing a radial crack at the interface under antiplane deformation is solved by
Erdogan and Gupta (1975). The method consists of the reduction of the related dual integral equations to a
singular integral equation. The technique is applicable to wedges with several radial cracks aligned on the
same direction. Another noteworthy contribution is the article by Ohr et al. (1985) wherein the complex
potential technique was utilized to investigate the interaction of a semi-infinite wedge crack with a screw
dislocation in an infinite domain.

The analysis of a screw dislocation in the wedge is accomplished in the first section of this paper. Two
types of boundary conditions, i.e., displacement—traction and traction—traction for the wedge are consid-
ered. Equilibrium equation in terms of antiplane displacement component leads to the Laplace’s equa-
tion. The Mellin transform is employed to obtain the solution. The behavior of displacement and stress
fields in the vicinity of dislocation is studied which reveals the well-known Cauchy type singularity of
stress components. The results of analysis are utilized to analyze wedges containing multiple cracks sub-
jected to antiplane traction on the free edges. A system of singular integral equations is obtained for the
dislocation density on the cracks surfaces. These equations are solved by the methodology developed by
Erdogan et al. (1973). The technique allows the analysis of curved cracks with any smooth geometry.
Moreover, cavities may be treated as closed cracks. For the latter configuration basically the same analysis
prevails but the ensuing system of integral equations is not singular and requires a different numerical
scheme for solution. The issue is beyond the scopes of the current study and will not be pursued further. In
this article, however, numerical results for only multiple embedded straight cracks are presented. The
influence of cracks orientation and location as well as wedge angle on the stress intensity factors is
investigated through some numerical examples. For the particular case of wedge with a single radial crack
the integral equation is identical with that of Erdogan and Gupta (1975) which confirms the validity of
analysis.

2. Wedge with screw dislocation

The distributed dislocation technique is an efficient means for treating multiple curved cracks and
cavities with smooth geometries. The major obstacle in the utilization of the method is the knowledge of
stress fields due to a single dislocation in the region. This task for domains with wedge configuration
containing a screw dislocation is taken up here. In the cylindrical coordinate system (R, 0, z), we consider an
isotropic elastic wedge with infinite radius, and apex angle « which is infinitely extended in the z-direction.
The only nonzero displacement component under antiplane deformation is the out of plane component
w(R, 0). Consequently, the constitutive relationships in polar coordinates read as

_pow _ v (1)
TOZ_R607 TRZ_,uaR7

where u is the wedge elastic shear modulus. Utilizing (1) the equilibrium equation in terms of displacement
may be written as

Aw(R, 0) = 0, (2)
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Fig. 1. Wedge weakened by a screw dislocation.

where A is the Laplace’s operator. In order to situate a dislocation at the point (a, ), we divide the wedge
into two regions 0 < 0 < f# and f < 0 < « (Fig. 1). The conditions representing a Volterra type screw

dislocation are (Barber, 1992),
wi(r, ) —wa(r, ) =0, 0<r<1,
wi(r, B) —wa(r,p) =0, 1<r< oo,

3)

where r = R/a is the dimensionless variable, subscripts 1 and 2 refer to the domain number, and ¢ desig-
nates the dislocation Burgers vector. The conditions of continuity and self-equilibrium of stress in the
wedge containing dislocation imply that

Tmz(K ﬁ) = Tzez(ft ﬁ)- (4)

The solution to (2) is accomplished by means of Mellin transformation. The Mellin transform for
sufficiently regular function f'(r) is defined as

Fo) = [ 1t (5)
0
where s is the complex variable. The inversion of Mellin transform yields
1 c+ioco B
f(» =5 /ciiOO F(s)r~*ds. (6)

The application of (5) to (2) leads to a second order ordinary differential equation, for each region. The
solution to these equations is readily known

Wi (s, 0) = ai(s) cos(0s) + bi(s) sin(0s), k=1,2. (7)
The Mellin transform of (3) and (4), provided that the Bromwich line in (6) is ¢ < 0, results in
0 oW, (s, 0) _OWA(s,0)
I/Vl(s? ﬁ) VVQ(S,ﬁ) - S’ 6() o=t - a() 9:/3' (8)

Depending upon the kind of boundary data on the edges of wedge, two different cases may be con-
sidered, i.e., displacement-traction and traction—traction conditions. These cases are analyzed separately in
the following.
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2.1. Displacement—traction

The wedge is considered to be fixed at the edge 0 = 0 and traction free at 0 = «. Therefore, the boundary
conditions became

wi(r,0) =0, To0:(r,00) = 0. 9)
The above conditions by virtue of (1) and (5) reduce to

ama(s, 0)

W(s,0) =0, 0

=0. (10)
0=

Utilizing (8) and (10), the four unknown coefficients in (7) may be determined; and in view of (1) and (6)
the stress components results in

5 1 [ [sin((o — B)s)cos(0s)] . |
_ - 5 < <
R T . [ cos(as) }r ds, 0<0<h,
c+ioco [ : _
o — —,ué L cos(fs) sin((0 — a)s) lds, B<O0<a,
a?l2mi Jo_io | cos(as) an
5 1 [ [sin((o — B)s)sin(0s)] .,
= —UUy— — S <0<
oz Faomi | . | cos(as) ]r ds, 0<O<H,
5 1 [ [cos(Bs)cos((0—a)s)] _,
__ o1 s <0<
tr K omi i | cos(as) } s, fsfsa

The integrals in (11) can be evaluated employing contour integration and the residue theorem. The
integrands are singular at points s; = (2 — 1)n/(2x), i = 0,£1,£2,... Considering the requirement im-
posed in the derivation of the first of (8) the Bromwich line in (11) should be chosen such that
—n/20 < ¢ < 0. To carry out the contour integration, we require that the integrands in (11) vanish as
|s| — oco. Consequently, for 0 < r < 1, the contour of integration consists of the second and third quadrants
of the complex S-plane, whereas for 1 <r < oo, the contour engulfs the first and fourth quadrants.
Applying the residue theorem in the region 0 < r < 1, we have

Tp, = 'uo% i(_l)f sin <(21_1)M) cos ((Zi—l)rcﬂ)r%_l’ 0<0<p,

— 20 20
0 & ; Qi—Dmp\ . (Q2i—Dr0—a)\ e,
— g — _ e —— 200 < <
T ,u(m ;( 1)"cos <72a )sm( o v , B<O<Lq,
(12)
0 & i Qi=Dr(e—=p)\ . [(Qi-DrO\ e,
rz — H— -1 — e e— 2 s 0 < 0 < s
T = H ;( )’ sin < o sin P r p
0 ; (2i — )mp (2i = 1)m(0 — o)\ e
_ 2N AL e <0<a
= h ;( 1) cos( P )cos( P e, B0

The stress components in the region 1 <7 < oo may be written by merely replacing © by —, in the above
equations. Utilizing equalities given in Appendix A, the stress components in the whole wedge region
simplify to
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n(0+f) n(0-p)
O 2 i,x cos (2_) cos (2_)
- H o (7‘5 _ 1) o o

To = A1 5 5
20a 1 + 7% — 275 cos (—"w;ﬁ)) 1 + 7% — 25 cos (—"(0;’”)
(0+8) (0-8) (13)
. n(0+ . n(0—
| () ()
"[_",Z = — —7J2 re
2oa

1+ % — 2 cos (“(6”})) 1+ 7% — 2¥i cos (—"(9;’3)>

o

The behavior of stress fields at the apex of wedge is identical with that obtained for isotropic finite
wedges by Kargarnovin et al. (1997). To investigate the behavior of stress fields at the dislocation position
we change the coordinate system according to Fig. 1. The relationships between the two coordinates may be
written as

7 sin @'
V1+#2+27cost

P2 =14r*42"cos(/), 0=p+sin"'

], 0<0 <2m, (14)

where ¥ = R’ /a. Substituting (14) into (13) and carrying out the necessary manipulation, it is easy to deduce
that

1
(T0:,Tz) ~ = asr’ — 0. (15)
r

It should be noted that the above Cauchy-type singularity is reported previously, e.g., Weertman and
Weertman (1992), for a two-dimensional isotropic media containing a screw dislocation. The displacement
fields are obtained by substituting stress component 74, from (13) into the first of (1), integrating the
resultant expression with respect to 6 and utilizing the first of boundary data (9). This leads to

253

w(r, 0) = % { tan~! {m sin (%(M ﬁ))} + tan™! [% sin (%(9 - ﬁ))] } (16)

Changing the coordinates in (16) according to (14) we may observe that the first term of (16) is single-
valued function of variable 6 whereas the second term is multiple-valued. Selecting the proper branch of
the second term on the cut surfaces as

, L 2042427 cos(0))F L (mo . ¥ sin 0

lim tan —— sin [ — sin - =0,

0'—0 (1 +72+2rcos(0))> — 1 2o V1472421 cos am
) 2042427 cos(0))F L (mo . ¥ sin 0

lim tan —— in [ — sin - = 2m,

0—2n (1 +72+2rcos(0))> — 1 2 V1472 + 2 cos 0

we conclude that (16) satisfies boundary condition (3).
2.2. Traction—traction

Suppose the wedge is traction free at the edges 0 = 0 and 0 = «. The conditions imposed by a screw
dislocation are given in (3) and the boundary conditions for the wedge read as

Ty0:(r,0) = 0, Tyg:(r, ) = 0. (18)
The above boundary data with the aid of the first (1) and transformation (5), yield

oM (s, 0)
00

_o, W0 (19)
0=0 60 O0=o



4540 R.T. Faal et al. | International Journal of Solids and Structures 41 (2004) 45354550

Utilizing (8) and (19) the coefficients in (7) may be computed. And an analysis analogous to case (a)
results in

6 1 et [sin((oc — B)s) sin(0s)

e o sin(as)

}VSIds, 0<0<B,

c—ioo

5 1 [ [sin(Bs)sin((0 —a)s)] _, ,
= —y— — S <0<
toe Ly i [ sin (as) ] s, <0<,
(20)
5 1 [ [sin((o — B)s)cos(0s)] . ,
= _— § < <
Ry i [ sin(as) }r ds, 0<O<H,

c+ioco : o
Ty = — é L / sin(fs) (?OS((@ %)s) s, <0<
a?2mi J. sin(as)

—ioco

The singularities of (20) are located at s; = in/a, i = +1,42, ... Carrying out the contour integration in
the region 0 < r < 1, the stress components may be readily obtained

e = > (=1)'sin <m(°‘;ﬁ)> sin (”T;g)r“ 0<0<p,

xa o
0 & i fimpN . (im0 —a)\ =,
_ .2 _ mp I S <0<
To- h ;( 1) sm( " )sm< " >r , B<0<aq,
(21)
0 & i . fin(e—f) im0\ x|
= —p— -1 , 0<O0<p,
T 'uoca ;( )sm( > os( > p
0 & ;. (inf in(0— o)\ u
=0 -1 — — |rr, <0<
=0 ;( )sm< » )cos( > >r p o

Carrying out some straightforward manipulations and using the relationships given in Appendix A the
stress components in region 0 < » <1, 0 < 0 <« may be recast to

[ z_ ©(0=p)
12 cos( " )

i — COSs (M>

,u5 T o
T =5 1" n P 0-p\ 2 1 0 ’
20a 1 + 7% — 2ricos (—“(;/)) 1 + 7% — 2ri cos (—"(;ﬁ)>
(22)
i ; n(0+p) ; m(0—p)
. :Lérg—l sm( : ) - sm( : ) |
20a 1 + 7% — 2ri cos (—"wjﬁ)) 1 + 7% — 2ricos (—”Wa_ﬁ))

The stress components in the region 1 <7 < oo, 0 < 0 <o may be obtained by replacing © by —n and
changing the sign of the relevant component in (22). Substituting the stress component 7y, into the first of
(1), integrating the resultant expression with respect to 6 and ignoring the rigid body displacement, we
arrive at the displacement field in the whole wedge region

e
) &8

I

w(r0) =5 {tan [ 5 wan (50 )| - ant | Z 5 (S04 )|}

(23)
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An analysis identical to the displacement—traction case reveals that the first term of the displacement
field (23) is multiple-valued on the dislocation line. Choosing the proper branch of the multiple-valued
function leads to boundary data (3).

3. Isotropic wedge with arbitrary oriented cracks

The dislocation solutions accomplished in the preceding section may be employed to analyze wedges
with several arbitrary curved cracks. For the sake of brevity of calculations we consider only straight
cracks. Let N be the number of cracks extended from (a;,7,) to (b;,n,), i = 1,2,...,N in polar coordinates
(Fig. 2). The antiplane traction on the surface of ith crack in terms of stress components in polar coor-
dinates become

T@z(ph 01) = Tp: COS P; — Ty sin b;- (24)
Suppose dislocations with unknown density B.;(p;) are distributed on the infinitesimal segment

p; < p < p; + dp; at the surface of jth crack. The traction on the surface of ith crack due to the presence of
above dislocation for displacement—traction case utilizing (13) and (24) becomes

m0:+6;) _ ©(0i+6;)
Ty (p 0) — 'uBZj(pj) C%—% € cos ( o §0i> cos ( L (pi)
0z\Pi, Vi) = Z
2ap; Y 1+ C} —2Cj;cos (M)

C;jcos (W - %) — Cos (W

=

+

+ @,
1+ C2 —2C;cos (M> ) {(dpf)z + (de(’/)z} , i# ) (25)

where C;; = (p;/p j)“/ *. Analogously from (24) and (22), the traction on the ith crack produced by the

aforementioned distribution of dislocations for the traction—traction case is

Fig. 2. Schematic view of a typical crack in a wedge.
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uB(p;) s C;;cos(¢;) — cos (—“(H';(?") + qoi) C;;cos(¢;) — cos ( Ul q))
%:(p1, ) = 2ap, Y > n0-0)\ > n(0:+0,)
Pj 1+ C} —2Cj;cos (T’) 14 Cj - ZCUCOS( )
1
2 o
X |(dp)) + (0,0, @< pi<py i)
_ —n(0;—0; _ —n(0;+0;
uB.(p;) iz C;' cos(¢;) — cos <7( i0) 4 (p,«) C;;' cos(¢;) — cos (7“”’ Ly (p,«)
T:(pi 01) = —— —=C,

2ap; 1+ C;? —2C;' cos (@) 1+ C;? —2C;' cos ( (9‘+9’>)
1
X |( o)) + (0, 40|, o <oy < by i)
(26)

Covering the cracks surfaces by dislocations, the principle of superposition may be invoked to obtain
traction on the crack surfaces. The details of derivations are not given here but the following steps are
taken. Egs. (25) and (26) are integrated on the crack surfaces and the resultant tractions in each case are
superimposed. The integration of (25) and (26) may be facilitated by describing cracks configurations in
parametric form. The parameter —1 <s < 1 is chosen and the following change of variables is employed for
straight cracks:

ps) =5 [0 =5 + 821+ + 201 — abicos(n, )]
Oi(s) = y; + sin”’ [(Sz:(ls))bl sin(n; — “/i)] ) (27)

1

@i(s) = 7; — bi(s) + sin”

bisin(n; — 7;)
[a} + b} — 2a;b; cos(n, — Vi)]l/z .
The traction on the surface of ith crack yields
N 1
(i), 0:(5)) = / b(Oky(s,0)dt, —1<s<1, i=1,2,...,N, (28)
j=1 7/-1

where b,;(¢) is the dislocation density on the nondimensionalized length —1 < ¢ < 1. The kernel k;;(s, f) in the
displacement—traction case is

o= ()| o) « (29)
Cii(s, 1) cos (%— @:(s )) — cos (W‘F (Pi(s))
1+ (Cyls,1))° — 2Cy (s, 1) cos (M)

o

Cyi(s,t) cos (W - (p,-(s)) — cos (W + (p,(s))
1+ (Cy(s, 1)’ - 2Cy(s, t) cos (—“6"(5)79’(’))) 7

o

Als

X (Cyls, 0)>

+

i,j=1,2,....N, (29)

where Cj;(s, ) = (p;(s)/ p]»(t))n/ *,0; and p; are given in (27) and prime denotes differentiation with respect to
the argument. Making use of (15) we may conclude that k;;(s, ) has Cauchy-type singularity for i = j as
t — 5. To illustrate this behavior the Hopital’s rule is applied on (29) which leads to
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o a_ - m
k,-,-(S,t) *E"‘;am(s_t) as 1t — s, (30)
where a_; = u/2n. The coefficients a,, m =0,1,... are regular functions of variable 7 in the interval

—1<t< 1 which are lengthy and are not given here. The kernel of integral equation (28) for traction—
traction case becomes

1

oy e (POY] L[ Cals.nycos(g,(s)) — cos (HULL 4 g, (5))
0= (2“) o (Pf(f)> 0 1+(Cz;f(s,t))2—2Cl:/(s7t)cos(‘N(Q—i(s)ofg'(t>))

Ci(5,1) cos(@,(s)) — cos (HLLUD 1 (5))
_ - e for 0 < p,(s) < p;(1),
L+ (Cyls, 1))’ = 2Cy(s, 1) cos (<UL )

o=

_ 008 [ (Cs1) " cos(gy(s)) — cos (D 4 g ()
k,-j(s,t):( u) (9,(t))2+<p,(t)> (Cs.0)F ( )

200\l 1+ (Cyl5.) = 2(Cyfo.1) " cos (FLLED)

(Cy(5:0))" cos(p(5)) — cos (LU 4 (s))
- ] for p, (1) <p,(s) < o0,
L+ (Cyls,1) > = 2(Cy5,1)) " cos (LA

o

i,j=1,2,...,N.
(31)
Analogously, in the traction-traction case the kernel &;(s, ) has Cauchy-type singularity for i = j as
t — s and the coefficient of singular term in (30) is a_; = (p/2m)sgn(z — s), where sgn is the sign function.

For the special case of a wedge with traction free edges, weakened by a single radial crack extended in
a<r<b, and bisecting the wedge apex angle and under constant traction 73 on the crack surface the
integral equation (28) simplifies to

(b—a) [V (p(s)) " (p(t))
ta(p(s) = & 2 _b.(1)dt, (32)
e 22 /¥<p@»7—«pa»7

EE)

where

p(s):b_;a—&—b;as, _1<s<l. (33)

The above integral equation is identical with that derived by Erdogan and Gupta (1975). This may validate
the present analysis.

By virtue of Buckner’s principle (Korsunsky and Hills, 1996) the left-hand side of Eq. (28) after changing
the sign is the traction caused by the external loading on the uncracked wedge at the presumed surface of
cracks. The applied traction on wedge with multiple cracks for displacement—traction case is known
70:(p, ) = h(p). The stress components in the above wedge where cracks are removed are obtained by the
direct application of Mellin transform. This results in
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1 [~ b1 —b)sin (%
lr0) = [ G ac,
P 1+ b2 + 2bcos (™)

1/OO b3(1 + b) cos (%)
pa Jo 14 b2+ 2bcos ()

(34)

‘Egz([),e) = h(C) dCa

where b = (p/ C)”/ *. The applied traction on the wedge with traction-traction boundary conditions is
70:(p, 0) = 79.(p, ) = h(p). The stress fields in the uncracked wedge yield

2 [ b(B>—1)cos
sz(p? 9) / 4 2 (
po Jo 14 b*—2b2cos (2

2 [ b(b*+ 1)sin (
’L'Hz(p70) _ﬁ/ov 1+b4 2bZCOS( ())

(35)

0)
zary ")
) _pya

We assume, without any loss of generality, that the applied traction on wedge is a patch load defined by

where / and 7, are constant length and traction, respectively, and H(p) is the Heaviside-step function.
Utilizing (24) and (34), the following traction should be applied on the surface of ith crack in displacement—
traction case:

T I b,%(s) [cos (%y + (/)i(s)) + b;(s) cos (”2;) — (pi(s)ﬂ
a9, 000 = =0 /o 1+ b3(s) + 2bi(s) cos (42) " v

where b;(s) = (p,(s)/{)™". Similarly for traction—traction case by virtue of (24) and (35) the left-hand side of
(28) becomes

21, /’ bi(S){Sln( )+ o,(s )) + b3(s )sm(

)], -
pils)a 1 + b}(s) — 2b%(s) cos (@)

T5.:(p;(5), 0:(s)) = —

Employing the definition of dislocation density function, the equation for the crack opening displace-
ment across the jth crack is

s 1
- 2 212 .
wi(s) —w;(s) = [1 [(p’/(t)) + (p;(0)0,(0)" | by(1)dt,  j=1,2,3,...,N. (39)

The displacement field is single-valued out of crack surfaces. Thus, the dislocation densities are subjected
to the following closure requirement:

2

1 1
| 1607 + 60007 b0d =0, j=1.23....N. (40)

The Cauchy singular integral equations (28) and (40) are to be solved simultaneously, to obtain the
dislocation density. This is accomplished by means of Gauss—Chebyshev quadrature scheme developed in
Erdogan et al. (1973). The dislocation density is taken as

il
sz(t):%, l<t<l1, j=1,2,...,N. (41)

Substituting (41) into (28) and (40) and discretizing the domain, —1 < ¢ < 1, the integral equations re-
duced to the following system of N x m linear algebraic equations:
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(41 A A - A | [&a(5)] [ qi(s) ]

Ay An Ayn - Ay || 82(1) q2(sr)

Asi Ay Az oo Asy gz3(tp) = 613(Sr) , (42)
L Avt Ava Anz - Aw ] [gn(t) ] Lan(s,) |

where the collocation points are
2p—1
s,:cos(z), r=1,....m—1, tp:cos<w), p=1....m (43)
m 2m

The components of matrix and vectors in (42) are

[ kij(s1,8)  ki(s1, 1) oo ky(s1ytn)
kij(sa,t1)  kij(s2,12) e kip(sa,te)
1
Aij = E R
kij(sm—lvtl) kij(sm—l;tZ) e k{'(snl—lvtin) (44)
| moyAi(t)  moAi()  --r mOuA(t)
g(t,) = [g5(t1) (k) -+~ gzj(fm)]Tv
1
q(s) = — [70(0,(51),0(51))  To(p(52),05(52)) =+ Toey(p; (1), 03(5m1)) O],

where ¢;; in the last row of 4;; is the Kronecker delta and superscript T stands for the transpose of a vector

and A,(t) = [(p}(1))* + (p,()0(0)) ]
The stress intensity factors for ith crack in terms of crack opening displacement (Fig. 2) is (Kanninen and
Popelar, 1985)

VI W (s) =W (s) V2w () = wi(s)
N T - BV (43)

Setting the points L; and R; on the surface of the crack in the direction shown in Fig. 2, yields
Y, =T YR, =T

1
o ( ‘2“S> [al + b} — 2a;b;cos(n; — 7;)]

(46)

ol
o=

1 —
N e

The substitution of (41) into (39), and the resultant equation into (45) in conjunction with (46), leads to
the stress intensity factors

Bl

V2
ki, = — T,u[aiz + b,-z — 2a;b; cos(n; — Vz‘)] g:i(—1),

(47)
V2 oy, i
kg, = 4 N[a,- + b; — 2a;b; cos(n, — "/i)] gi(1).

The solutions of Eq. (42) are plugged into (47) to obtain the stress intensity factors.
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4. Numerical examples and results

The analysis developed in the preceding section allows the consideration of a wedge with any number of
cracks with different orientations. Validation of the numerical results is carried out by considering an
isotropic half-plane containing a radial crack with changing orientation. The boundary of half-plane is
traction free and a constant antiplane traction is applied on the crack surfaces. The dimensionless stress
intensity factors determined by the present approach are in excellent agreement with the results in Tables 1
and 3 of the article by Erdogan and Gupta (1975).

In what follows, three numerical examples are presented to demonstrate the applicability of the outlined
methodology. The applied traction in all examples is the patch load (36), with / = 10 cm. The first example
is a wedge with apex angle « = 2r/3 weakened by two equal-sized radial cracks bisecting the apex angle.
The distance between the center of cracks are //5 and the distance from the apex to the center of the first
cracks is //10, where [ is the length of the patch load. Figs. 3 and 4, show the normalized stress intensity
factors (SIF), k/ko, where ky = 79,/ay is the SIF of the corresponding crack situated in an infinite plane
under far field antiplane traction 7y and ay is half of the crack length, against the nondimensionalized crack
lengths for the two different boundary conditions of wedge. As it may be observed, the SIF increases rapidly
as the crack tip approaches the wedge apex. A similar trend may be noticed as the distance between the tips
of cracks decreases. The formation of regions with high stress level is indeed attributed to the interaction of
geometric singularities. Moreover, the slow growth of kz,/ky versus the crack length may be noticed.

The effect of wedge angle on the SIF is examined by considering a radial crack with constant length 0.2/,
and distance from the center to the apex ¢ = 0.101/. Figs. 5 and 6 display the normalized SIF verses the
wedge angle for this crack with fixed orientation y = /6 as well as varying orientation wherein the crack
constantly bisects the wedge angle. As the wedge angle increases the singularity of stress components at the

5.5 T T T T T T T T
—kiiko

Crack length/I

Fig. 3. Dimensionless stress intensity factors for two radial cracks with displacement-traction boundary condition.
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Fig. 4. Dimensionless stress intensity factors for two radial cracks with traction-traction boundary condition.
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Fig. 5. Variations of k/ky, with changing wedge apex angle and displacement-traction boundary condition.
wedge apex magnifies (Kargarnovin et al., 1997). On the contrary, according to Egs. (37) and (38) the

tractions on the crack surface diminish by increasing the wedge angle. The overall effects of the two
parameters on the SIF are shown in the aforementioned two figures.
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Fig. 6. Variations of k/ky with changing wedge apex angle and traction—traction boundary condition.
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Fig. 7. Dimensionless stress intensity factors for two nonaligned cracks for displacement-traction boundary condition.
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Fig. 8. Dimensionless stress intensity factors for two nonaligned cracks for traction—traction boundary condition.

In the last example, a wedge with angle o = 51/6 containing two cracks with equal lengths is considered.
The variations of k/k, with nondimensionalized crack length are depicted in Figs. 7 and 8 for two different
boundary conditions of the wedge. The crack closer to the wedge apex obviously experiences higher stress
intensity factors.

5. Conclusion

A simple analysis is performed to obtain closed form expressions for displacement and stress fields due
to the presence of a Volterra type screw dislocation in an elastic wedge. Two different types of boundary
conditions are considered. The stress fields reveal Cauchy type singularity in the vicinity of dislocation.
This is in agreement with the reported results in literature. The dislocation solutions are utilized to
determine stress intensity factors for embedded straight cracks. The interaction of two adjacent cracks
shows that the stress intensity factors of the two approaching crack tips intensify. Moreover, the stress
intensity factor increases by increasing the crack length. The interaction between the wedge apex and crack
tip is significant; the stress intensity factor grows rapidly as the distance between the crack tip and wedge
apex reduces.

Appendix A

The following identities for |K| < 1 may be easily proved:

K sin(x)
1 + K2+ 2K cos(x)’

Y (—K)'sin(ix) =

1
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o0

> (=K)'cos(ix) = —K

i=1

K + cos(x)
1 + K%+ 2K cos(x)’

= i in; _ K(1 —K)sin(x)
2:(_K)gnkb——Uﬂ-—‘q_%Ka+2Kcoﬂ2ﬂ’

i=1

o0 i . K(K+1 x
Z(—K) cos[(2i — I)x] = — 1 +§(2 T 2)1{0222(;@'

i=1

In the case of |K| > 1, we should replace K by K~!.
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